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Motivated by recent advances in technology, a new look is taken at the problem of
estimating the phase of a periodic waveform in additive gaussian noise. The maximum a
posteriori probability criterion with signal space interpretation is used to obtain the
structures of optimum and some suboptimum phase estimators for the following cases:
(1) known constant frequency and unknown constant phase with an a priori distribution;
(2) unknown constant frequency and phase with a joint a priori distribution; (3) fre-
quency a parameterized function of time with a joint a priori distribution on parameters
and phase; (4) frequency a gaussian random process. (Part I introduces the general

problem and treats case 1).

l. Introduction

Many of the algorithms, such as the phase-locked loop,
currently used for phase estimation were originated against the
background of analog technology some 25 years ago. While
most of the algorithms have proved to be readily implement-
able in terms of current digital technology, this does not
necessarily mean these are the most desirable algorithms with
current {or near future) technology. In some cases, the
structure of the optimal phase estimator is not complicated
and it is worth considering against the background of new
technology, whether some of the optimal or related sub-
optimal structures may be more desirable than some of the
older algorithms. The purpose of this article is to look at some
of the optimal and suboptimal structures.

il. Problem Statement

Following the approach of Ref.1, we choose for the
modulator function
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y (ft+x,(0)

where y (+) is periodic with unit period, f, is the nominal
frequency of the periodic waveform and x(#) is the phase to
be estimated on the basis of the received signal

2() =y (f t +x,(2)) + n(5)

where n(f) is a gaussian random process with mean O and
known autocorrelation. In the case where the frequency is
constant and known equal to f,» then x(¢) = x,, is a constant
to be estimated by a certain functional on z(¢) (random
variable). In the case where the frequency is constant and
unknown, then x(f)= f,# + x, is a ramp function with
parameters f, and x, to be estimated in the form of certain
functionals on z(¢). In the case where xo(t) is a gaussian
random process with known autocorrelation function, then



the estimator for x(z) is a certain operator on z(¢), which is of
course a random process.

Let us assume the channel for z(z) is bandlimited with
bandlimit F/2 and that the gaussian noise n(r) is white over
this bandwidth. Then to proceed with the analysis we shall
deal with all waveforms in terms of their unique sample
representations at the sampling rate F. Thus,

t, = ifF

z; = z(ifF)

n, = n(i/F) (1
¥, = ¥(i/F)

x; = x(i/F)

where the index i runs over the integers. For xo(t), a gaussian
random process, the multivariant a priori probability density
for the phase sequence {x;}, 4 <i< B_isgiven by
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__Xx X
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X X
exp {-1/2 D, 2 Ribxx ©)
i=A . j=A,

where R, ; = R, (i/F, j/F) is the covariance matrix, [R, ! is
its determinant and R;il. is its inverse. In the case of unknown
constant frequency and phase, we drop the gaussian assump-
tion and the joint a priori probability density for fo and x is
given by

£y Xg) = FAy) * £.0%) 3)

where we have assumed fo and x, are independent random
variables for the usual application and ff(-) and f,(+) are
arbitrary. In the case of known constant frequency f, and
unknown phase x, the a priori probability density

[.(x0) (C)

may also be chosen arbitrarily.

Similarly to Eq. (2) the probability density function for the
noise sequence {ni} is given by

B_—~A_+1
z z
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B, B,
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exp § —1/2 Z Z R inn %)
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Because of the assumptions regarding noise spectrum and
sampling rate, the members of the noise sequence are
uncorrelated.

This gives
= 2
Rm.]. = o, Si]. (6)
1
=5 @)
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where &, is the Kronecker delta and we have used the
assumption that n(r) is wide sense stationary. Substituting Egs.
(6), (7), and (8) into Eq. (5) gives

B -4, +1
T (B,
f(n ) = @2n) o
B
1 4 2
exp —2? E n ©)
n l=Az

Under the assumption that {x;} and {n;} are independent
random processes

L3 D) = 1,0 - y(at+x)D) (10)

and
£z b ) = £,z yEa+x) D 1) (1)
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Then

LUz v atx) DS}

fopUx 31z = (12)

L4z D

Now the denominator of Eq. (12) is not a function of {x,}, it
is merely a factor that normalizes the joint density of Eq. (11)
with respect to {xl. }. Thus, when estimating {xl.} on the basis
of a received {z, }, we may treat fz({zi }) as a constant.

Substituting Egs. (2) and (9) in Eq. (12) gives

fop (B 1D = ()
Bx Bx
xp (1D | D0 20 Rjxx
=4 A
B

1
2
+7 Z k y(fctk+x ))
" z

(13a)

where C,({z;}) includes the constant coefficients from Egs.
(2) and (9). For the case of constant unknown frequency and
phase we use Eq. (3) instead of Eq. (2) which gives, in place of
Eq. (13a),

Fenlx 1) = (D

exp |~ —— Z (2, - (ft, +x))?

20}1 k:Az

+inf.(f) +1nf (x) (13b)
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and, for the case of constant known frequency and unknown
phase,

fo (61D = G, h

exp Z @z, - ¥(£ 1, + X))
20 k=4,

+1nf (x) (13¢

The conditional probability density functions (13) contain all
needed information for estimation of the phase (and/or
frequency). The maximum a posteriori probability (MAP)
estimator is simply the mode of the distribution (13), given
the observed {z;}. The minimum mean square error (MMSE)
estimator is the mean of the distribution and the minimum:
mean absolute error (MMAE) estimator is the median of the
distribution, etc. It is possible for a distribution to fail to have
a unique mode or median.

lll. Estimation of Unknown Phase with
Known Constant Frequency

As the sampling rate F and noise bandwidth F/2 increase,
while holding constant the noise spectral density S, = ai/F \
the initial time ¢, = A,/F and the final time ¢, = B,/F, the
summation in Eq. (13c) becomes well approximated by an
integral and we can write

xlz(xllz( )]) = C3 [Z(t)]

t

-1 2
exp | 5 f ()

4

—y(fcr+x))2 dr + Inf, (x) (14)

where the constant (with respect to x) coefficient C, is now a
functional on z(z). (As F becomes large, the coefficient for
f, ,(++*) becomes small, but the coefficient for f, | (+|*) does
not ) If the argument of the exponential function 1n Eq (14)is



an even function of x about its maximum value, then the value of
x at the maximum is not only the MAP estimator 3?0, but also
the MMSE and MMAE estimator. We will pursue the MAP
estimator and observe when it is also the optimum estimator
under other criteria.

From Eq. (14) we see that the MAP estimator, if it exists, is
the value of x that maximizes

2
- f GO -y, T+ 0P dr+Inf () (15)
0J;
1

where N, is the one-sided noise spectral density. Expanding
the integrand gives

t

1 2 2 2
2
_NO./; z (T)dT+]V—f z(T)y(fc'r#-x)dT
1

0
51

1
2
L syt ing () (16)
NO tl c x

The first integral is not a function of x and the third integral is
not a function of x if z, - £, =n/f,, n a positive integer, which
we assume henceforth. Thus the MAP estimator 350 is the value
of x that maximizes

ty
]—\[2— f Zr(f,7 +x)dr+1nf (x) (17
o Jy

Real functions such as z(#) and Y(f,t + x) on the interval
1, St S t, are elements of a signal space (essentially a
Hilbert space) with the usual inner product

t

2
&y = f xX(0) y(2) dt (18)

t

and norm

) (19)

In terms of the vector space notation, Eq. (15) can be written
~IIZ-F@IP + N, Inf, (x) (20)

and Eq. (17) can be written
2E YN+ N, 1nf, (x) 1)

where |Z]| and I[?(x)ll are not functions of x. If x,, has a
uniform a priori distribution

1,-1/2 <x0 <1/2
f,(x,) = (22)

0, elsewhere

as is usually the case for an initial estimate, then we see from
Eq. (20) that X, should be chosen to minimize the distance
between Z and J(%,) or, from Eq. (21), to minimize the angle
between z and 57(3?0) (maximize the cosine of the angle where

E V&) )
cos ¢ =TS T o (23)
Wzl - 1yl

If y(+) is differentiable for all values of its argument then a
necessary condition for maximizing

)
Z P = f 2y (f,m+x) dr (24)

4

is

2
@Y = f () y'(f,r+x)dr=0 (25)

’

Schemes that maximize Eq. (24) are often called direct
estimators and those that solve Eq. (25) are often called
indirect estimators. Indirect estimation must be used with
caution. In the first place, the integrand of Eq. (25) must
contain the derivative of y(-) and not merely y(-) shifted one
quarter period, as in the special case of a sinusoid. Also Eq.
(25) is a necessary condition and may well be satisfied by
values of x that do not maximize Eq. (24). For example, Eq.
(24) may have a number of relative maxima only one of which
is the absolute maximum. In this case, Eq. (25) has multiple
solutions.
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If [¥(+)|is a bounded variation function, as we shall assume,
then the tip of the vector 3(x) describes a contmuous closed
curve on the surface of a hypersphere of radius ILyll about the
origin in the signal space as x traverses its unit interval from
-1/2 to +1/2. This curve may not have a derivative everywhere
and it spans a linear subspace L, that is generally not finite
dimensional. The MAP phase direct estimation problem is now
visualized by choosing a point f(xo) on this curve (the phase
to be estimated), moving away a distance in some direction to
7 determined by the additive noise vector! 7

7= x)tH (26)

and then seeking the point xo on the curve y(x) parameter-
ized by x, which is closest to Z or its orthogonal prOJectlon
onto L In equation form this amounts to choosing x to
minimize

7Gx ) + 7~ VI

(see Eq. (20) with f,(+) constant). This is the same as choosmg
the point y(xo) on the curve to minimize the angle betweenZ
(or its orthogonal projection onto L) and y(xo) (see Eq.
(21)). Since'the path described by v(x) on the surface of the
hypersphere can be rather arbitrary, depending on the choice
of y(+), it can be appreciated that the indirect method of
estimation that looks for points on the curve for which
12~ y(xo)ll or @, (xo)) is statlonary must be used with
caution. The point ¥, that maximizes (Z, Wx)) may not even
be stationary and there may be stationary points that do not
give the maximum value of (Z, Y(x)). The vector ¥'(x), if it
exists, is tangent to the curve and the solution of Eq. (25)
involves finding points on the curve where its tangent is
orthdgonal to z (or its orthogonal projection onto Ly).

The indirect method tends to be computationally more
desirable than the direct method (driving something to zero
tends to be simpler than driving something to its global
maximum). For this reason, many phase estimation devices are
based on or inspired by the indirect method. A well-known
example inspired by the indirect method is the phased-locked
loop.

As we shall see in Section V, when y(+) is sinusoidal all of
the perils of the indirect method disappear and other good
things happen. But for as simple a waveform as the square
wave there are problems as discussed in Section V1.

'We need only consider the orthogonal projection of 7 onto the linear
subspace L y spanned?(x).
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IV. Discrete Phase Estimation

In case there are only a finite number of possible phases, as
in the case of subcarrier or symbol synchronization in a fully
synchronous system, the indirect method cannot be used if
advantage is to be taken of the a priori information. The
possible phases x4, X5, * - *» Xq,, are used to obtain n values
of Eq. (17), with f,(-) replaced by the discrete probabilities,
and the largest value of Eq. (17) identified (not more than two
values of Eq. (17) need be stored at any time). This use of the
direct method does not require that y(+) be differentiable, etc.

V. Estimation Of The Phase Of A Sinusoid

If y(n) = A, cos 2m n then the curve described by (x) in
signal space is a circle of radius 4 \/7 about the origin and
lying in a certain two-dimensional hnear subspace L, (a plane
through the origin). The orientation of the plane of the circle
with respect to a fixed basis depends on the frequency f,. The
direct method of estimation amounts to finding the point
})(550) on the circle closest to the received signa1?=5z’(x0) +7
or its orthogonal projection onto L, and the indirect method
amounts to finding a stationary point where the tangent of the
circle is orthogonal to Z or its orthogonal projection onto L .
If Z is not orthogonal to the plane of the circle (a singular
condition) then there are always exactly two statlonary points
and the one correspondmg to minimum ||z~ y(x )l is easily
selected. The fact that P(x) lies in a two- dlmensmnal linear
subspace gives the further simplification that |2~ $(x)Il and
' 7(x)) can be evaluated in terms of two scalar functions of z
(functionals of z(¢)) and two trigonometric functions of x. In
fact Eq. (25) can be solved explicitly for x, in terms of the
two scalar functions of Z"(the coordinates of Z with respect to
a basis). Also, due to the symmetry of the circular path of
¥x), IIZ- ¥(x)Il is an even function about its minimum for
any 7 and thus, by Eq. (14),

fun@B) = C;@) exp [T I1Z- FoI? + 1n £(x)

nn

27
is an even function about its maximum provided the a priori
distribution f{x) is uniform. In this case, the MAP estimator is

also the MMSE, MMAE, etc. estimator.

Let us return to Eq. (17) to obtain the indirect estimator
relation by differentiating

t
2
]% f z(1)4, cos 2n (f,7 + x) dr + Inf (x) (28)
0 ¢
1



to obtain

2-2m4, J’2 D snn(reiyan <8 o
e z(7) sin 2 +X.)dr = 29
N, . 7)sin 2 (f 7 +X,) dr 13) (
Define
I[z(+)] = J;l z(r) cos 2n f,rdr = Tz/lijﬁ (30)
1, <E> -»:(0»
Qlz(*)] = J z(7) sin 2nf, rdr = -"—_y;;—
1 V2 Hy I
(3D
Then Eq. (29) may be written
N e
Qeos2nxy tIsin2n %, = 0 [:G) (32)

0 ~
4n4 fx(xo)

If the signal-to-noise ratio is very large or if the a priori
distribution is uniform the right member of Eq. (32) vanishes
and we have the familiar result

2n X, = - arctan Q (33)

0 I

With current digital technology Eq. (33) can be easily
mechanized and X, can be obtained on a four-quadrant basis.

It is interesting to consider the functional form of
f)c'(x)/fx(x) for several a priori distributions. In the case of the
gaussian distribution

== (34)

where m is the mean and ¢? the variance. The gaussian is the
only distribution giving a linear result. Substituting Eq. (34)
into the right member of Eq. (29) gives something like a
phase-locked loop except that Sc\o is constant over the interval
t, St<t, instead of a function of time.

The a posteriori density function for the estimator of Eq.
(33) is given by (Ref. 2)*:

~
ar cos 21r(x0~x

~ )
Fep Xl 1) = Ce 07 (footnote 3) (35)

where C is the normalizing constant and

" ArT
a® = (36)
NO
P +Q?
P =4 (37
N,T

where T = t, "t

The distribution (35) can also be viewed as the a priori
distribution for a second estimate X , conditioned on the first
estimate X | (= X,). We can then write

~

~ a r.ocos 2m(X -, )
o - 1”1 02 %01
x,lx ,r, (XKoo Xgq- 1) = Ce (38)

where we assume /, and Q, are independent of I, and Q, as
in the case where the time intervals for the successive
estimations are nonoverlapping. From Eq. (38),

fl

"~ ~~
x Koo Kor 1)

27

= -2ar, sin2n(%,, - xm)

f PN
ey (g g0 7p)

(39)

2The distribution Eq. (35) results from averaging Eq. (14) over all z(7)
subject to the condition of the observable r. If the condition r is
removed then

[+3

foalx X )=e 24 2na0052n(?0~x0)CD(ozCOSZTr(?O~x0))

xx7070

2

o 2

- sin 27r(5c‘0—x0)
e

which is less desirable.

3C e@r o8 27€ g gimply the probability density function of the
estimation error €, conditioned on r.
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which can be substituted in the right member of Eq. (32) to
give -

Nooy 1y

Lol . fA
+ = -
Q2 cos 21rx02 12 sin 21'er

- "~ o~
) sin2n(X,,, - %)

(40)

Expanding the sine term in the right member and solving for
Xoa gives

tan 27X, = = ‘ 41
02 Nyar 1

This is actually a bayesian recursive estimator based on the
new observables Q, and I, and the previous estimate X, and
the previous r, . A little calculation will show that

Nalr N.oar

! sin 27%; = 0, ot cos2mxy, =1, (42)
4 2AC
and so Eq. (41) can be written
- Q, 0,
tan 27X, = - ——— (43)
12 + I1

which is as it should be since the optimum recursive estimator
should give the same result as a one-time optimum estimator
using all of the observables. Clearly the error distribution for
X4, has the same form [Eq. (35)] as that for 5301 and thus the
form of Eq. (35) is a reproducing distribution for this recursive
baysian estimator. At each step of the estimator,
Fr12(xg 1 2(+)) is an even function of x,,, about its maximum
[see Eq. (14)] and so the MAP recursive estimator is also
MMSE, MMAE, etc.

The mechanization of an estimator suggested by Eq. (43)
and Eq. (35) seems straightforward. Successive pairs Q;, I; for
successive equal increments of time of duration T are stored in

a shift register and the contents summed to give

0-2 0 I1=21 (44)
i=1 i=1
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where n is increasing with time. The phase estimate at any
time is given by

- .. 9
tan 27X, = - v 45)

and the error of the estimate is described by Eq. (35) where

24
ar =7€_\/(12+Q2) (46)

[}

The mean square error of the estimate (or any other moment)
is an easily calculated function of ar. Thus if a specified value
of the MSE is designated as the “operating threshold,” then
when the generally increasing ar reaches the corresponding
value, the two shift registers can start dumping so that Eq.
(44) is replaced by

n

0= 0,

n-N

=Y 1 47)
-N

to give a running or aperture sum of the Qi, I. The calculation
of ar from Egs. (46) and (47) is continued for each value of n
and, if it should decrease significantly due to the run of values
of Q? and It.2 (r is a random variable), then the value of & in
Eq. (47) can be automatically increased.

This has the advantage of following slow changes in x,, with
an aperture filter of length NT with N controlled to maintain
the quality of the estimate at a prescribed level. This is
something like a phase-locked loop of variable bandwidth with
a guaranteed limit on noise MSE. However, unlike the
phase-locked loop, there is not a phase initial condition to
affect acquisition time.

The aperture averaging scheme is a suboptimal way of
handling the estimation of a nonconstant phase. If a variable
phase x(¢) can be modelled by a parameterized random process
such as

x(t) = fttx,

with f; and x, random variables, or by a more general one,
then an optimum estimator can be formulated as discussed in
Part II.



Vi. Estimation of the Phase of
Nonsinusoids

Returmng to Eqs (20) and (21), we see that to evaluate
II?y - Pl or (Z, y(x)) as functlons of 7, Z,, we must have the
orthogonal prc)Jecuon Z, of Z onto the linear subspace L,
spanned by (), —1/2 < x <1/2 expressed in terms of
coordmates Zp 22, - of Zwith respect to some orthonormal
basis vl, v2, -+« for Ly. For the sinusoid considered in the
previous section, Ly is two dimensional, and orthonormal basis
vectors ¥, and v, are given by [see Eqgs. (30) and (31)] :

v () =+ %cos 2af t (48)
vz(t) = %sin 2nf ¢t (49)

and the coordinates z, and z, of 7 are given by

NE21E0) (50)

—> —>
z, = (z, V1> =

NEWIES) 51

N
li

— >
, =z vy =

These coordinates of Z are a minimum set of observables
required to determine X as in Eq. (33) or Eq. (41) When L,
has n > 3 dimensions, the explicit solution for X, in terms of
the n observables (coordinates of 7) becomes more difficult.

A convenient orthonormal basis for a general periodic y(n)
is the fourier basis \/2/T cos 2nujn, /2/T sin 2ajn, j= 1, 2,
- - oo, Clearly any y(-) with a discontinuity or a discontinuity
in any derivative requires a basis of infinite dimension. In such
a case, the minimum set of observables required to determine
X, s, in effect, the complete function z(z) from ¢, to 1, ; that
is, the infinite set of coordinates of Z with respect to the basis
above. In the case of large noise where the magnitude of the
orthogonal projection of 7 onto L., is of the same order as
iﬁz’ll, other periodic waveforms y(-) cannot be much better
than the sinusoid for phase estimation. This is because the
difference between the maximum and minimum values of
‘.l? -7(x)H tend to be about as large for the sinusoid as for
any other y(+). The sinusoid descnbes a great circle on the
surface of the hypersphere of radius lLyll and the path of any
other J(x) is also confined to the surface of the same
hypersphere.

However, for the case of small noise where ﬁ’y usually does
not take 7 far from the path 3(x) on the hypersphere and the
error due to the noise is approximately the component of n
along y (xo) the error in the estimate can be reduced 31mp1y
by increasing the length of the closed path described by y(x)
so that a given noise displacement alongy (xo) corresponds to
a smaller increment of x. This can only be done by increasing
the dimension of L yand of the resulting one-less dimension of
the surface of the hypersphere on which the path described by
P(x) lies. If s is the arc length along the path, then we want to
increase

== I (52)

in order to reduce the error of phase estimation for the small
noise case. For the sinusoidal case of the previous section,

_ T
=24,V 5 (53)

and the variance of the zero mean noise component along s is

justS, =N0/2. Thus
N.[2 1 N
02(530) = 0 -~ ._9 (54)
ds\* 4n* AT
dx
a well known result.
For the case of
n
y(n) = E (a]. cos 27rjn+b]. sin 27jn) (55)
=1
where
n
2412y = :
(1/2) f__: (a} +b7) = p,, s fixed
we have, by Eq. (52),
ds \? - 2 - 22 2
(?E) =2’T ), J (@ +b?) (56)
j=1
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As a simple example of a nonsinusoidal y(-) let us consider

y(m) =094, (cos 2mm + %cos 67rn) (57)

which has the same power as 4 cos 27n and which is the
fundamental and next higher harmonic of a square wave. Here

ds 2 _ 2 42
— = 09X4n" AT (58)
dx 4
and
~ 1 No
(%) = (59)

09X 81 A2T

for small noise. This is a 2.6-db reduction of phase error with
respect to the sinusoid result of Eq. (54). We next consider
phase estimation for this example in the presence of large
noise. The L for Eq. (57) has four dimensions and })(x) traces
out a smooth (all derivatives exist) closed path on the
three-dimensional surface of a four-dimensional hypersphere
for -1/2 < x < 1/2. The path is rather more interesting than
the circle considered in the previous section. For a typical
large noise z the norm H?y - )|l to be minimized as a
function of x has six stationary points — three maxima and
three minima. If we define

t

1, =f i z(r) cos 2nf, 7 dr (602)
7
fa
Q, = f z(7) sin 2nf 7 dr (60b)
Y
5
I, = I z(r) cos 6nf, T dr (60c¢)
f
2
0, =f z(7) sin 6nf, 7 dr (604d)

L5l
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then
(Z;,}’(x) ) , ) 0. sin
————=]_ cos 2nx - sin 2mx
Voo4, ! !
Iy 3
+ — cos 6mx - — sin 67x (61)
3 3
and

(Z,.7())

V094,

=-27 [Ql cos 2mx + /1, sin 2mx

+Q, cos b6mx + 1 sin 67Tx] (62)

For the case I, = Q, =1; = Q5 =1 the indirect estimator
&7 (x))=0 has six solutions at approximately x = -0.31,
-0.25, -.06, 0.19, 0.25, 0.44 at which are located respectively
a max, min, max, min, max, min of Z,,, J(x)). The respective
values of @, F(xMV094, are 072, 0.67, 1.74, -0.72,
-0.67, -1.74. Of the six values of x provided by the indirect
estimator only one, )?0 =-0.06 is the MAP estimate of x,,. In
this case (?},,f(x)) is not an even function with respect to
x =X, and therefore Eq. (14) (with f,(+) uniform) is not an
even function with respect to its maximum at x =X,. Thus it
is not clear whether the MAP estimator is MMSE, MMAE, etc.
As we have seen, it is not difficult to find 02(350) for small
noise (in this case ¥, is approaching the MMSE estimator), but
the probability distribution. for '550 does not appear to be
known for the general case.

For small noise, the indirect MAP estimator (?y,?'(x)) =0
may have six solutions, but if so, there will be two closely
spaced pairs that are easily distinguished and rejected while the
other two are as in the case of a sinusoid. The small noise
performance of the MAP estimator above in Eq. (59) is
considerably better (7-db) than that of the suboptimal
estimator @, ¥(x - 1/4)) = 0, which is sometimes used.

We turn next to estimation of the phase of a square wave

y(m) = Los 2my (footnote 4) (63)

“The Notation Cos and Sin refers to unit-amplitude square waves in
phase with cos and sin.



Here Ly is infinite dimensional, and the closed path on the
hypersphere surface described by ?(x) is the sum of circular
motions in mutually orthogonal planes in accordance with the
fourier series expansion of Eq. (63). In this case, the maximum
of @ P(x)) [see Eq. (21)] is generally not stationary and an
indirect MAP estimator is not appropriate. The direct estima-
tor for a uniform a priori distribution on x, seeks the value of
x that maximizes

t
2
(E; RE3) =J. z(r) Bos 2n(f,r +x) dr
¢

1

t

JA 1 .

'nzl:zf—lj 2(r) cos 2m(2j - 1)
i

2
21

X (ch +x)dr (64)
= I .
4 2j-1 .
_Trz 5 - j cos 2m(2j - x
j=1
2j-1 . .
- 2j-1
271 sin 2m(2j - 1)x
where
2
I = f z(7) cos 2nkf v dr (65a)
2
P
Q, =f z(7) sin 2nkf 7 dr (65b)
t
1

much as in Eq. (60), where the /,, O, are the infinite (or very
large) set of observables needed. Since

2(t) = A, Cos 2n(f,t +x,) + n(?) (66)

I, and Q, are independent gaussian random variables with
means

24 T

Ell]= ﬂ; cos 2mkx

(67a)

2ACT
E[Q,]=- pors sin 2mkx (67b)
and variances
) ) NOT
o*11,] =*10,] =— (68)

where T = t, - ¢;. Another way to look at this estimation
problem is to use Eq. (66) to write

t
2
(E:,, Yooy = A, J Cos 2n(f 7 +x,) Cos 2n(f,7 + x) dr

4

t

2
+ j- n(r) Eos 2n(f,r +x)dr
t

1

(69)

The first integral is an even periodic triangular function of
X -~ x4 of period unity, peak values *4 T, and slopes 44 T.
The last integral is a periodic random process V,(x) that, when
added to the triangular function, is the function of x to be
maximized for the MAP estimator. Thus

(?y, 37(x)) =AT Cos 2n(x - x,) tN_(x) (footnote 5)

(70)

Now
h rh

RNN(xl,x2)=Ef f n(r) n(r,) Los2n(f 7, +x )
0, Tty

X LCos 2n(f 7, tx,) dr,dr,

N, 2 rh
=7f f 8(r, - 1,) Bos 2n(f 7, +x,)
N

5The notation Cos and Sin refers to unit-amplitude triangular waves in
phase with cos and sin.
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X Cos 2n(f, 7, *+x,) dr,dr;

2

Ny
= Cos 2n(f,7, tx,)

1

X Los 2n(f,r, +x,)dr,

N,T
5 (71)

Cos 2n(x, - x,)

Thus the autocorrelation of N,(x) is a periodic triangular
function of unit period. This means the power spectral density
Sy () consists of a sum of delta functions in accordance with
the amplitudes and frequencies of the sinusoidal components
of the triangular autocorrelation (71). This is in agreement
with Egs. (64), (65), and (67).

The noise performance evaluation of the MAP phase
estimator for the square wave requires that we obtain the
probability distribution of the value of x that maximizes Eq.
(70) where N,(x) is gaussian with autocorrelation (71). It is
clear that the unconditional density will be an even function
of x about x,,. However, the conditional density (with uniform
a priori x)

£, e 17) = C4(?) expﬁz— [ACT Cos 2m(x - x,) +Nz(x)]
o ,

(72)

is generally not an even function of x about x, and so the
MAP estimator is not necessarily the MMSE, etc. estimator.

The small noise performance of the MAP phase estimator
for the square wave is arbitrarily good in the sense that as a
square wave is approximated by including more and more of
its harmonics, the length of the closed path on the hyper-
sphere surface increases without limit and the ds/dx of Eq. (52)
approaches infinity. However, in this case “small noise” is
noise whose component of RMS length /N, /2 along}"(xo) is
small compared to the distance As along which the curve y(x)
is approximately straight. This distance As is a fraction of the
amplitude of the highest harmonic in y(+) and becomes
arbitrarily small as the square wave is better and better
approximated. Thus, the ideal square wave is a special case
having no “linearized small noise” result for the MAP phase
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estimator. Some previous work (Ref. 3) on phase estimation of
square waves is in agreement with this insight.

It appears that although square waves are easily generated
and manipulated in electronic circuits, they are more difficult
to deal with than sinusoids when estimating phase. This is
generally true for any y(x) which spans a linear subspace of
more than two dimensions. To find the value of x that
maximizes f, ,(x £),Z must be observed in L, and notin some
linear subspace of smaller dimensions; that is, the number of
observables must equal the dimension of L . If we use a
smaller number of observables, we are dealing with an
orthogonal projection of Y(x) and Z onto some linear subspace
Ly of L. Then choosing x to minimize the distance between

(x) and Zin Ly generally does not minimize the distance in
Ly, and so the result is a suboptimal estimate. For the small
noise case, the variance of the component of along the pro-
jection ofy( ) onto L is the same as the variance of the
component of g’alongy (xy)(in L )

But if § is the arclength of the projection onto fy, ther
generally
ds
VN~ (73)

and by Eq. (54) the variance of the error in X, is increased.

For example, in the case of a square wave where the
observables chosen are

2
I= I 2(t) Eos 2nr dr

21

(74a)

5
0= J z(r) Sin 277 dr (74b)

1

instead of Eq. (65), as in the idealization of the sequential
'ranging system, the above observations apply. L  is infinite
dimensional and Zy is two dimensional. Here we have (x)
given by

A
y(fct +x)= ?20 Los 2n(f ¢ +x) (75)



with
()
R (762)
7, = 2CL4) (76b)

gl

as orthonormal basis vectors for L The small noise per-
formance easily follows from

dy, 2 fdy \?
(g) (dx) +(‘c‘1?2) = 842T \/(Cos? 2mx + Gin® 2mx)

=16A2T,x#0,£1/4,1/2  (77)

Substituting this in the middle member of Eq. (54) gives

No

2 ~
o°(x )= (78)
0 32427

Thus the small noise performance for this case is 0.9 db worse
than for a sinusoid of the same power and frequency (in the
presence of the same noise).

The performance of the suboptimal estimator using the
observables in Eq. (74) has been completely evaluated in
Refs. 4, 5, and 6 including the singular behaviour at x = 0,
*1/4, 1/2 in the small noise case. It is interesting to observe
that optimum estimation of phase based on the incomplete set
of observables in Eq. (74) requires a knowledge of the
amplitude of the square wave in z(#) — a piece of information
that is not needed by the MAP estimator that maximizes Eqs.
(69) or (70).

If we return to the full infinite dimensional basis for the
Square wave we see that the radius of the circle described by
y(x) in the plane corresponding to each harmonic decreases
inversely as the frequency of harmonic while the variance of
the pro;ectlon of 7 on any plane is NV, . Thus for a given value
of 42 T/N there will be a highest harmomc in whose plane the
51gnal to noise ratio is greater than unity. The observables
corresponding to higher harmonics will be mostly noise and
therefore should be more lightly weighted. This leads to the
question of what is the useful number of observables to use as
a function of AZT/N An almost equivalent question is what
is the useful number of harmonics in p(+) as a function of
A? T/N This has been in effect answered in the context of an
1nd1rect estimator in Ref. 3. There the optimum local refer-
ence waveform is essentially the derivative _}'(x) of the J(x)
having the useful number of harmonics.

The work reported above has benefited significantly from
conversations with S. A. Butman and J. R. Lesh.
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